This document is provided as an example of how to use the tma package. With the)October2013versionofthepackagetherehavebeentwooptionsaddedtoallowselectionofdifferentnumberingstylessincethemoduleM381differsfromthenorm.Tousetheoptionsstartyourdocumentwith:\documentclass[a4paper,12pt]\{article\}\usepackage[OPTION]\{tma\}\myname\{...WhereOPTIONisoneofthefollowing[roman]Questionsnumberedas$1,1(\mathrm{i}),1(\mathrm{i})(\mathrm{a})\ldots$[alph]DefaultQuestionsnumberedas1,1(a),1(a)(i)...undefined

Q 1.
(a) We have $1=10^{0}$ and $1+2+3+4=10^{1}$. Prove that there are no other powers of ten which are the sum of the first n integers.

We have:

$$
\sum_{i=1}^{n} i=\frac{(n)(n+1)}{2}
$$

Let

$$
\begin{aligned}
\frac{(n)(n+1)}{2} & =10^{x} \\
\Rightarrow(n)(n+1) & =2^{x+1} 5^{x}
\end{aligned}
$$

Now, either n is odd, or $n+1$ is odd.
Consider the case where n is odd:
By the Fundamental Theorem of Arithmetic, n can only have the prime factors 2 or 5 . Since it is odd, it can only be a perfect power of 5 . Now, $n+1$ also can only have the prime factors of 2 or 5 . If n is divisible by 5 , then $n+1$ is not divisible by 5 . Therefore $n+1$ is a perfect power of 2 . Therefore:

$$
\begin{aligned}
& n=5^{x} \quad \text { and } \quad n+1=2^{x+1} \\
& \quad \Rightarrow x=0
\end{aligned}
$$

(for any higher $x, 5^{x} \gg 2^{x+1}$)

$$
\Rightarrow n=1
$$

Now consider the case where $n+1$ is odd:
By similar arguments to above, $n+1$ must be a perfect power of 5 and n must be a perfect power of 2 .

$$
\begin{aligned}
n=2^{x+1} & \text { and } \quad n+1=5^{x} \\
& \Rightarrow x=1
\end{aligned}
$$

(for any higher $x, 5^{x} \gg 2^{x+1}$)

$$
\Rightarrow n=4
$$

Therefore $n=1$ and $n=4$ are the only solutions to the original problem.
(c)
(i) Show that:

$$
\sum_{x=1}^{n} x(x+1)=\frac{n(n+1)(n+2)}{3}
$$

Let

$$
f(n)=\frac{n(n+1)(n+2)}{3}
$$

Now, adding the $\mathrm{n}+1$ term to the above

$$
\begin{aligned}
f(n)+(n+1)(n+2) & =\frac{n(n+1)(n+2)}{3}+(n+1)(n+2) \\
& =\frac{\left(n^{3}+3 n^{2}+2 n+\right)}{3}+n^{2}+3 n+2 \\
& =\frac{\left(n^{3}+6 n^{2}+11 n+6\right)}{3} \\
& =\frac{((n+1)(n+2)(n+3))}{3} \\
& =f(n+1)
\end{aligned}
$$

Therefore, if $f(n)$ is valid, then so is $f(n+1)$.
Since $1 \times 2=2=\frac{1 \times 2 \times 3}{3}=f(1)$, then $f(n)$ is valid for all $n \geq 1$.
(ii) Show that:

$$
\sum_{x=1}^{n} x^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}
$$

Let

$$
f(n)=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}
$$

Now, adding the $\mathrm{n}+1$ term to the above

$$
\begin{align*}
f(n)+(n+1)^{4} & =\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}+(n+1)^{4} \\
& =\frac{1}{30}\left(6 n^{5}+15 n^{4}+10 n^{3}-n\right)+\left(n^{4}+4 n^{3}+6 n^{2}+4 n+1\right) \\
& =\frac{1}{30}\left(6 n^{5}+15 n^{4}+10 n^{3}-n+30 n^{4}+120 n^{3}+180 n^{2}+120 n+30\right) \\
& =\frac{1}{30}\left(6 n^{5}+45 n^{4}+130 n^{3}+180 n^{2}+119 n+30\right) \tag{1.1}
\end{align*}
$$

Now,

$$
\begin{align*}
f(n+1) & =\frac{(n+1)((n+1)+1)(2(n+1)+1)\left(3(n+1)^{2}+3(n+1)-1\right)}{30} \\
& =\frac{1}{30}(n+1)(n+2)(2 n+3)\left(3 n^{2}+9 n+5\right) \\
& =\frac{1}{30}\left(6 n^{5}+45 n^{4}+130 n^{3}+180 n^{2}+119 n+30\right) \tag{1.2}
\end{align*}
$$

Comparing equation (1.1) with equation (1.2) we see that

$$
f(n)+(n+1)^{4}=f(n+1)
$$

Therefore, if $f(n)$ is valid, then so is $f(n+1)$.
Since $1^{4}=1=\frac{1 \times 2 \times 3 \times 5}{30}=f(1)$, then $f(n)$ is valid for all $n \geq 1$.

Q 3. Find the general solution of the equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x^{2} \tag{3.1}
\end{equation*}
$$

The auxillary equation is

$$
\begin{equation*}
3 \lambda^{2}+4 \lambda+1=0 \tag{3.2}
\end{equation*}
$$

which factorises to

$$
\begin{equation*}
(\lambda+1)(3 \lambda+1)=0 \tag{3.3}
\end{equation*}
$$

and so has solutions

$$
\begin{equation*}
\lambda=-1 \text { and } \lambda=-\frac{1}{3} \tag{3.4}
\end{equation*}
$$

As both roots are real and distinct, the complementary function is

$$
\begin{equation*}
y_{c}=C \mathrm{e}^{-x}+D \mathrm{e}^{-\frac{1}{3} x} \tag{3.5}
\end{equation*}
$$

Now, let us find the particular integral. As the right hand side of equation 3.1 is x^{2}, our trial solution is the polynomial

$$
\begin{gather*}
y_{p}=p x^{2}+q x+r \tag{3.6}\\
\Rightarrow \frac{\mathrm{~d} y_{p}}{\mathrm{~d} x}=2 p x+q \tag{3.7}\\
\Rightarrow \frac{\mathrm{~d}^{2} y_{p}}{\mathrm{~d} x^{2}}=2 p \tag{3.8}
\end{gather*}
$$

Substituting the trial particular integral into equation 3.1

$$
\begin{gather*}
6 p+8 p x+4 q+p x^{2}+q x+r=x^{2} \tag{3.9}\\
\Rightarrow p x^{2}+(8 p+q) x+(6 p+4 q+r)=x^{2} \tag{3.10}\\
\Rightarrow p=1, \quad q=-8, \quad r=26 \tag{3.11}
\end{gather*}
$$

Thus the particular integral is

$$
\begin{equation*}
y_{p}=x^{2}-8 x+26 \tag{3.12}
\end{equation*}
$$

and combining equation 3.5 with equation 3.12 , by the rule of superposition, we get the general solution of equation 3.1 to be

$$
\begin{equation*}
y=C \mathrm{e}^{-x}+D \mathrm{e}^{-\frac{1}{3} x}+x^{2}-8 x+26 \tag{3.13}
\end{equation*}
$$

