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This document is provided as an example of how to use the tma package.
With the 4thOctober 2013 version of the package there have been two options
added to allow selection of different numbering styles since the module M381
differs from the norm.
To use the options start your document with:

\documentclass[a4paper,12pt]{article}

\usepackage[OPTION]{tma}

\myname{...

Where OPTION is one of the following

[roman] Questions numbered as 1, 1(i), 1(i)(a). . .

[alph] Default Questions numbered as 1, 1(a), 1(a)(i). . .

Q 1.

(a) We have 1 = 100 and 1 + 2 + 3 + 4 = 101. Prove that there are no other powers of
ten which are the sum of the first n integers.

We have:

n∑
i=1

i =
(n)(n+ 1)

2

Let

(n)(n+ 1)

2
= 10x

⇒ (n)(n+ 1) = 2x+15x

Now, either n is odd, or n+ 1 is odd.

Consider the case where n is odd:
By the Fundamental Theorem of Arithmetic, n can only have the prime factors 2
or 5. Since it is odd, it can only be a perfect power of 5. Now, n + 1 also can only
have the prime factors of 2 or 5. If n is divisible by 5, then n+ 1 is not divisible by
5. Therefore n+ 1 is a perfect power of 2. Therefore:

n = 5x and n+ 1 = 2x+1

⇒ x = 0
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(for any higher x, 5x � 2x+1)

⇒ n = 1

Now consider the case where n+ 1 is odd:
By similar arguments to above, n + 1 must be a perfect power of 5 and n must be
a perfect power of 2.

n = 2x+1 and n+ 1 = 5x

⇒ x = 1

(for any higher x, 5x � 2x+1)

⇒ n = 4

Therefore n = 1 and n = 4 are the only solutions to the original problem. �

(c)

(i) Show that:

n∑
x=1

x(x+ 1) =
n(n+ 1)(n+ 2)

3

Let

f(n) =
n(n+ 1)(n+ 2)

3

Now, adding the n+1 term to the above

f(n) + (n+ 1)(n+ 2) =
n(n+ 1)(n+ 2)

3
+ (n+ 1)(n+ 2)

=
(n3 + 3n2 + 2n+)

3
+ n2 + 3n+ 2

=
(n3 + 6n2 + 11n+ 6)

3

=
((n+ 1)(n+ 2)(n+ 3))

3
= f(n+ 1)
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Therefore, if f(n) is valid, then so is f(n+ 1).

Since 1× 2 = 2 = 1×2×3
3

= f(1), then f(n) is valid for all n ≥ 1. �

(ii) Show that:

n∑
x=1

x4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

Let

f(n) =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

Now, adding the n+1 term to the above

f(n) + (n+ 1)4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
+ (n+ 1)4

=
1

30
(6n5 + 15n4 + 10n3 − n) + (n4 + 4n3 + 6n2 + 4n+ 1)

=
1

30
(6n5 + 15n4 + 10n3 − n+ 30n4 + 120n3 + 180n2 + 120n+ 30)

=
1

30
(6n5 + 45n4 + 130n3 + 180n2 + 119n+ 30) (1.1)

Now,

f(n+ 1) =
(n+ 1)

(
(n+ 1) + 1

)(
2(n+ 1) + 1

)(
3(n+ 1)2 + 3(n+ 1)− 1

)
30

=
1

30
(n+ 1)(n+ 2)(2n+ 3)(3n2 + 9n+ 5)

=
1

30
(6n5 + 45n4 + 130n3 + 180n2 + 119n+ 30) (1.2)

Comparing equation (1.1) with equation (1.2) we see that

f(n) + (n+ 1)4 = f(n+ 1)

Therefore, if f(n) is valid, then so is f(n+ 1).

Since 14 = 1 = 1×2×3×5
30

= f(1), then f(n) is valid for all n ≥ 1. �

page 3 of 4



L101 TMA-01 Peter McFarlane A1234567

Q 3. Find the general solution of the equation

3
d2y

dx2
+ 4

dy

dx
+ y = x2 (3.1)

The auxillary equation is
3λ2 + 4λ+ 1 = 0 (3.2)

which factorises to
(λ+ 1)(3λ+ 1) = 0 (3.3)

and so has solutions

λ = −1 and λ = −1

3
(3.4)

As both roots are real and distinct, the complementary function is

yc = Ce−x +De−
1
3
x (3.5)

Now, let us find the particular integral. As the right hand side of equation 3.1 is x2,
our trial solution is the polynomial

yp = px2 + qx+ r (3.6)

⇒ dyp
dx

= 2px+ q (3.7)

⇒ d2yp
dx2

= 2p (3.8)

Substituting the trial particular integral into equation 3.1

6p+ 8px+ 4q + px2 + qx+ r = x2 (3.9)

⇒ px2 + (8p+ q)x+ (6p+ 4q + r) = x2 (3.10)

⇒ p = 1, q = −8, r = 26 (3.11)

Thus the particular integral is

yp = x2 − 8x+ 26 (3.12)

and combining equation 3.5 with equation 3.12, by the rule of superposition, we get
the general solution of equation 3.1 to be

y = Ce−x +De−
1
3
x + x2 − 8x+ 26 (3.13)
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